=8 Computer Architecture

Introduction to Processors

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic

FUNDAMENTALHHO 0 Spring 2025

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
Designing Digital Systems

CS-173, © EPFL, Spring 2025

© kras99 / Adobe Stock

Previously A

= Designing complete digital systems »

= Buses in digital systems "
« With tri-state drivers or multiplexers
« Swapping registers example

= \Verilog loops and generate construct for instantiating modules
 Ripple-carry adder example

= \Verilog: reduction operators and generate constructs

What Have We Learnt So Far? &

= Important classes of digital building blocks
« Sequential building blocks: flip-flops, registers, counters, ...
« Combinational logic components: gates, multiplexers, ...
 Memories: devices that store information
« Controllers: finite state machines

= \Verilog: A language for describing and modelling digital circuits
= With that knowledge, we can design an entire simple processor

CS-173, © EPFL, Spring 2025

Let's Talk About...

..Designing a Simple Processor

CS-173, © EPFL, Spring 2025 = l b o
.. | |*© supranee / Adobe Stock

Quick Outline

m Processor

* From programs to computers
» Translating high-level code into binary
« Why design a processor?

= Under the hood i
« Data path and control path — - |
* |Instruction and data memory ¢
» A Simple Computer

» Harvard vs. Von Neuman

= |nstruction set architecture
= Why RISC-V?

CS-173, © EPFL, Spring 2025 = l b o
.. | |*© supranee / Adobe Stock

A Processor

CS-173, © EPFL, Spring 2025 = l b o
.. L |*© supranee / Adobe Stock

A Processor

= A processor, also referred to as
a Central Processing Unit (CPU),
Is the central component in any
general-purpose computing system
» E.g., phones, laptops, tablets, servers, ...

= CPU is responsible for executing software
applications and facilitating data processing

= CPU orchestrates the data manipulations
according to the instructions provided by
software programs

CS-173, © EPFL, Spring 2025 24 ol l | e o
R | @) Supranee/ﬂl‘dobeStock

O

From Programs to Computers [s

CS-173, © EPFL, Spring 2025 e (} o
S * © supranee / Adobe Stock

// variable initialization

int data = 0x00123456; //

int result = 0;

int mask = 1;

int count = 0;

int temp = 0;

int limit = 32;

do { //
temp = data & mask; //
result = result + temp; //
data = data >> 1; //
count = count + 1; //

} while (count != limit); //

CS-173, © EPFL, Spring 2025

hexadecimal

loop
bitwise and
addition
shift right
addition
condition

A Simple Computer Program

C Programming Language

= Consider this piece of code
= Q: What does it do?

= A: It counts the number of
ones in the 32-bit integer
data and stores the result
In the variable result
e result = 9

10

A Simple Computer Program

C Programming Language

= Solution; variable updates through loop iterations

Step data temp result
Initialization 0000 0000 0001 0070 0011 0700 0101 0110 0 0

18t Loop iteration | 0000 0000 0001 0070 0011 07100 01701 0110
2"d | oop iteration | 0000 0000 0000 1001 0001 1010 0010 1011
3" Loop iteration | 0000 0000 0000 0100 1000 1101 0001 0101
4t Loop iteration | 0000 0000 0000 0010 0T00 0110 1000 1070
5t Loop iteration | 0000 0000 0000 000T 00T0 0011 0100 0107

EXAMPLES

e N W S o |
w NN = O

31st Loop iteration | 0000 0000 0000 0000 OOOO OOOO 0000 0000 0
32nd | oop iteration | 0000 0000 0000 0000 0000 0000 0000 0000

0S-173, ® EPFL, Spring 2025 The number of ones in the 32-bit variable data -

A Simple Computer Program

Low level programming, C language

// variable initialization

int data = 0x00123456;
int result = 0; = Q: Identify lines that concern data
int mask = 1; « Read, write/update, compute
int count = 0; = A
int temp = @; - variable initializations
int limit = 32; « operations: bitwise, arithmetic,
do { logic, relational, shift, etc.
temp = data & mask; « assignments
result = result + temp;
data = data >»> 1;
count = count + 1;

} while (count != limit);

A Simple Computer Program

Low level programming, C language

// variable initialization

int data = 0x00123456;
int result = 0; = Q: Identify lines that control
int mask = 1; the execution of the program
int count = 0; and the flow of data
int temp = 0; « if-else, switch, loop, etc.
int limit = 32; = A: do-while loop
do { . :
= There exists also some hidden
temp = data & mask;
control that makes the program
result = result + temp; . .
execute sequentially (one line
data = data >»> 1; ,
after another), loop, skip some
count = count + 1;

} while (count != limit); lines, or return to an earlier line

Hardware-Friendly Programs

CS-173, © EPFL, Spring 2025 e (} o
S * © supranee / Adobe Stock

Machine Language

Binary

= Hardware does not speak C, Java, Python, ...; it speaks ‘0" and "1’
= Machine language is the lowest level of programming language

= CPU code consists of machine language instructions
* Instructions instruct the processor to execute a specific task
* Instructions are patterns of bits that correspond to CPU commands

Translating High-Level Code Into Binary

= Source code

» The process begins with a high-level source code written in a programming language
= Compilation or interpretation

» The source code is processed by a compiler or interpreter

« Compiler translates the code in intermediate formats, specific to the target platform

 Interpreter executes the source code line by ling, translating them into machine code
(binary) and executing them immediately

= Optimization

« Compiler may optimize the code to improve performance or reduce its size

CS-173, © EPFL, Spring 2025 16

Translating High-Level Code Into Binary

Contd.

= Linking (for compiled languages)

« Combining intermediate formats with external libraries and functions, if needed

= [Optional] Assembly code generation

« Human-readable representation of machine code

= Binary code generation

« Sequences of 0s and 1s representing machine instructions
Note: Assembly and binary code will be in our focus...

CS-173, © EPFL, Spring 2025

17

From High-Level Programs to Assembly

Algorithm

Let us now translate our simple program to something hardware can be made
to understand...

= Step 1: Add line numbers and labels
= Step 2: Assign variables to registers

= Step 3: Replace each code line with
a corresponding machine language instruction

Step 1: Line Numbering and Labeling

variable initialization

= Number lines of code 0 int data = Ox00123456;
« Do not number lines 1 int result = 0;
that have no effect on 2 int mask = 1;
the program execution 3 int count = @;
4 int temp = 0;
5

= | abel what may be int limit = 32
important lines of code do {

* E.g., loop body 6 loop: temp = data & mask;
= |JSe appropriate 7 result = result + temp;
P P 8 data = data >> 1;
symbols for comments 5 count = count 4 1.
10 } while (count != limit);

Note: Program conversion in progress...

Step 2: Assign Variables to Registers

= \/ariables are data
« Variables are read

« Variables are updated (overwritten)
Program variables

» Registers store data reside in registers

» Registers are read
 Registers are updated (overwritten)

CS-173, © EPFL, Spring 2025

20

Step 2: Assign Variables to Registers

Contd.

variable initialization

» Assuming registers are 0 x1 = Ox@0123456; # data
named x0, x1, x2, etc., 1 X2 = 0; # result
and each register stores 2 x3 = 1; # mask
32 bits, let us assign 3 x4 = 0 # count
variables as follows 4 X5 = 0 # temp

e data: x1 5 X6 = 32; # limit
* result: x2 do {
* mask: X3 6 loop: x5 = x1 & x3;
e count: x4 7 X2 = X2 + X5;
 temp: x5 8 x1 = x1 > 1;
e limit: x6 9 X4 = x4 + 1;
10 } while (x4 != x6);
CS-173, © EPFL, Spring 2025 21

Note: Program conversion in progress...

Step 3: Instructions

In Assembly

= et us rewrite every line using commands/instructions in the format below

Operation name Destination, Left operand, Right operand

= Destination and operands are variables (registers)

= | et us give the operations some simple codenames:
 li. load a literal (an immediate) into a variable
« and: bitwise and of two variables
« add: addition of two variables
« addi: addition of a variable and a literal (an immediate, a value)
« srli: shift right logical by a literal (an immediate)
 bne: if two variables are not equal, go to the line with the label (branch)

Step 3: Instructions

In Assembly, Contd.

Operation name Destination, Left operand, Right operand

0 1i x1, 0x00123456

1 11 X2, ©

2 1i x3, 1

3 1i x4, ©

4 11 x5, ©

5 li x6, 32

do {

6 loop: and x5, x1, x3 # x5 = x1 & x3

7 add x2, x2, x5 # x2 = x2 + x5

8 srli x1, x1, 1 # x1 =x1 > 1

9 addi x4, x4, 1 # x4 =x4+1
10 bne x4, x6, loop # while (x4 != limit)

CS-173, © EPFL, Spring 2025
Note: Program conversion in progress...

Et Voila !

= Our first program in assembly

= Although it seems less readable
(to humans), it is way more suitable
for hardware implementation

« Operations are encoded in a simple
and regular manner

 Translation to binary is trivial
« Variables (data) live in registers

Let us now design a digital circuit able to interpret
and execute this program: the CPU ...

1i
11
11
11
11
11

loop: and
add
srli
addi
bne

x1,
X2,
X3,
X4,
X5,
X6,

x5,
X2,
x1,
X4,
x4,

0x00123456
%)

1

%)

%)

32

x1l, X3
X2, X5
x1l, 1
x4, 1
x6, loop

Note: Program conversion completed

Why Design a Processor?

= \WWe know how to design a fast digital logic circuit that counts the number of
ones in a 32-bit binary number
« From truth tables to efficient implementation with logic gates or
« With shift registers and counters, as a more algorithmic approach

= Q: Why design a processor now?

= A: Processors can do much more than counting the number of ones.
When the sequence of instructions changes, the processor's work also
changes. Yet, this versatility comes with a runtime penalty, as specialized
solutions always outperform the general-purpose ones

CS-173, © EPFL, Spring 2025 25

Under The Hood

Inside Processors

CS-173, © EPFL, Spring 2025 = l b o
.. | |*© supranee / Adobe Stock

Two Parts of a Processor

= Part I: Data path

« Concerns everything related to data
 Variable storage/read/write

« Operations on variables
* Includes the digital logic circuits that perform /lj\
operations on data or hold data

= Part Il: Control path

« Concerns everything related to the code execution
* Instruction reading/decoding/sequencing

« Manages the digital circuits of the datapath so they
perform the operations as specified by the instructions

CS-173, © EPFL, Spring 2025
© Sashkin / Adobe Stock

Part I; Data Path

= Data path, also called datapath, contains
 An arithmetic-logic unit (ALU)
« Aregister file

= ALU performs the operations on program variables
« E.g., bitwise, logic, shift, comparisons, etc.

= Register file is an array of registers for keeping the program
variables and some other special uses

Arithmetic-Logic Unit

A High-Level View

= Recall: ALU performs operations on program variables
« E.g., bitwise, logic, shift, comparisons, ...

Operand, Input
(a vector, typically 32 bits)

Operand; Input
(a vector, typically 32 bits)

CS-173, © EPFL, Spring 2025

A

Result Output
> Al (a vector, typically 32 bits)
B Op

‘Code" of the operation
to perform on the operands
(binary vector)

29

Register File

A High-Level View

= Recall: Register file is an array of registers for keeping the program variables

and some other special uses Registers

Register
\ File

N

\\
N —

j Ports of the register file

= All ports (in, out) of the register file connect to all registers in the array

= Two registers can be read in the same clock cycle

Register File

A High-Level View

= TwO registers can be read in
the same clock cycle

= Reading from and writing to registers
is fast (one CPU clock cycle)
= FF is expensive per bit
« DFF typically contains ~20 transistors

= |n practice, register files are constructed
using SRAM memory cells

« SRAM cell typically contains ~6 transistors

Registers

Register

File

31

Register File

A High-Level View

Data to write to register '"AW" W Register
(a vector, typically 32 bits); Input File

A

B

Index of the register "AW" to write to /‘
(index is often called "address”); Input

Write enable — if active,
data on input W port is
written to reqgister AW, Input

CS-173, © EPFL, Spring 2025

AWWr AA AB

Data from register 'A"; Output
(a vector, typically 32 bits)

Data from register ‘B’ Output
(a vector, typically 32 bits)

Index of the register 'B"; Input
(index is often called "address”)

Index of the register "A"; Input
(index is often called "address”)

32

Datapath

Connected, Final

= ALU receives operands from
the outputs of the register file

= Register file receives the result
of the operation performed by
the ALU and saves it in one
of its registers

= Registers in the register file and
the ALU are tightly coupled (i.e,
close, wires connecting them are
short), which makes data transfer
between them fast

Register

R File

A

B

AWWr AA AB

/

> ALU

Datapath

Connected, Final

/

= Example instruction Register :
w Registe

e and x5, x1, x3 File

B

AWWr AA AB
Operation Destination, Left operand, Right operand -

Note: Instruction is a binary vector, structured

 operation code for and
« (101), for register x5
« (001), for register x1

« (017), for register x3 “x5”1 :°x3” “and”

“Xl,,

Note: x5" and others should be replaced by the corresponding binary vectors

CS-173, © EPFL, Spring 2025

35

Two Parts of a Processor

Recall

= Part Il: Control path

« Concerns everything related to the code execution
* |Instruction reading, decoding, and sequencing

« Manages the digital circuits of the data path so they
perform the operations as specified by the instructions

© Sashkin / Adobe Stock

Part Il: Control Path

= The control logic of the processor

= Roles
« Instruction reading (loading instructions from the program in memory)
« Sequencing instructions (ensuring the correct program order)
» Decodes the instruction from its binary form

« Depending on the instruction, sets control signals for the ALU
and the Register File accordingly

= Implements the finite-state machine of the processor

Instruction Memory

Role I: Reading Instructions

= Where is the program?
« The program (instructions) resides in a larger memory external to the CPU

= We call this memory instruction memory

 External to the processor Data from the memory

. tor, typically 32 bits); Out
» Typically made from SRAM memory cells (& vector, typically 32 bits); Ou
* Instruction memory # Register file

MemDataOut
Address (location) of the instruction to read Address
a vector, typically 32 bits), Input ,
(ypieaty)i Inp Instruction
Memory
CS-173, © EPFL, Spring 2025 38

Note: Additional interfaces not shown

Control Path

Role II: Sequencing Instructions

= Control path logic sets the address
of the instruction to be read from
the memory

Program
Counter (PC)

= CPU has an additional register
dedicated to keeping
the address (location) of the
iInstruction in memory

« Program Counter (PC)

Address

MemDataOut

Instruction
Memory

Control Path

Role I: Sequencing Instructions, Contd.

= Control logic updates the program
counter (PC), in preparation for
reading of the next instruction

Program
Counter (PC)

= The next instruction in memory is
typically at the neighboring memory
address, higher than the previous

« PC should be incremented to “point” to
the next instruction

Address

MemDataOut

Instruction
Memory

(7]
i
—
o
=
<
x
1]

Sequencing Instructions
Contd.

= Recall: PC register holds the instruction address

= Adder increments the contents of the PC, so that the subsequent
instruction is read in the next clock cycle

= Example instruction at the line/index/address 6
(6 loop: and x5, x1, XBJJ “and x5, x1, X3

Program 6 MembDataOut

— D Counter (PC) Q Address
Instruction
|/ Memory
7
+ <

CS-173, © EPFL, Spring 2025 _ 1

41

(7]
w
—
o
=
<
>
]

Sequencing Instructions

Contd.

= Example instruction at the line/index/address 10

 Next instruction (label loop)
on line/index/address 6

« PC must be able to accept a value
other than the one computed by the adder

6 — s
> MUX

—
6 loop: and x5, x1, x3
\ 10 bne x4, x6, loop

“bne x4, x6, loop”

D

Program

10

CS-173, © EPFL, Spring 2025

Counter (PC) Q |
.

g

Address

MemDataOut

Instruction
Memory

42

Control Path —
Role Ill: Decoding Instructions A
_lw Reg.ister S ALU
File
= Once the instruction is read B /O.p/
from the instruction memory, AWWr AA AB
it must be decoded P
= Decoding is parsing the binary
representation of the instruction,
to identify all the relevant info Instruction Decoding Logic
* operation :
* destination MembDataOut
e« operands — Address
Instruction

Memory

CS-173, © EPFL, Spring 2025

44

Data Path + Control Path

CPU with Instruction Memory

Note: Almost there...

— W

Register
File

A

B

/

> ALU

AWWr AA AB

Control Logic (Read, Decode, Update PC)

SEL
> MUX

D

Program

Counter (PC) Q

T

o

—

Address

MemDataOut

Instruction
Memory

CS-173, © EPFL, Spring 2025

46

Register File is Not Sufficient

= One remaining challenge: In practice, the quantity of data on
which programs operate is way too large to fit in the register file

= There is always an external memory for data, which
* .. Can be dedicated to data only or
« ... Can be shared by the data and the instructions
« .. is much larger (in capacity) and slower than the register file

Data Memory

Data from the memory
(a vector, typically 32 bits); Output

MemDataOut

Data Memory

MemDataln

Address (location) of the data to read
(a vector, typically 32 bits); Input

Address Wr

Control signal, write enable (one bit); Input

CS-173, © EPFL, Spring 2025

— W

Register
File

A

B

/

> ALU

AWWr AA AB

Data to the memory

(a vector, typically 32 bits); Input

48

Now We Have Everything...

= ...to build a simple CPU

« Arithmetic-logic unit (ALU) and
Register File for variables and computation W
* [nstruction memory

 Program counter (PC) register
for instructions fetched from memory

* Data memory

© Sashkin / Adobe Stock

A Simple Computer

Processor (= Data Path + Control Path)
and the data/instruction memory

CS-173, © EPFL, Spring 2025 5 (J a0
.. L |*© supranee / Adobe Stock

CPU + Memory

A Simple Computer s
A
Register
MemDataOut W o Re > ALU
> MUX B op
SEL
Data Memory W We AA AR /
r :
MembDataln < e e CPU
Add!'ess VYr
Control Logic (Read, Decode, Update PC)
""" SEL Program MemDataOut
Y MUX Counter (PC) Q Address
o Instruction
Memory

.

L

Disclaimer...

= A number of simplifications in the previous figure, but the main idea is there

» |n practice, many more signals and ports exist, along with multiplexers and
other logic to enable the execution of any program

= Memories support both read and write and have more complex interfaces

Types of Computer Architecture

= Harvard architecture
* Instructions and data memory reside in separate memories
« See the block diagram on the previous slide

= Von Neuman architecture
* Instructions and data reside in the same memory
« We say the memory is unified

« In general-purpose computers (desktops, laptops, servers, etc.),
Von Neumann architecture is predominant

a8 mph |
......

Instruction Set Architecture

One of many important computing abstractions

CS-173, © EPFL, Spring 2025 e ol (} o
S * © supranee / Adobe Stock

Instruction Set Architecture

= [nstruction Set Architecture (ISA) Applications
refers to the set of instructions
that a CPU can execute and Databases Software
the programming model that Compilers
these instructions define for SA Assermbler
software developers J
Digital circuits Hardware

Transistors

Instruction Set Architecture
Contd.

Applications
= |SA abstracts away the low-level details Software
of the CPU hardware implementation Dat g

i : Compilers
» |SA defines an interface between)
the hardware and software ISA Assembler

Components of a Computer System Digital circuits Hardware
Transistors

Why Is ISA So Important?

v'Formalization of the programmer view allows the CPUs to continue
supporting the same ISA while evolving and improving over time

v'Users profit from the advancements in the CPU architecture
(e.g., higher speed) for free, without having to update their programs

= Drawback: fundamental innovations that require changes to ISA are thus
prevented; fixed ISA enforces binary compatibility

= Example:

« |A-32/x86 is a very common ISA introduced by Intel. Intel's Core, Pentium, and Xeon
series, as well as AMD's Ryzen, Athlon, and EPYC series conform to this ISA

CS-173, © EPFL, Spring 2025 57

Typical Details of an ISA

" Instruction set
« What operations the processor can directly execute

= Instruction encoding
« Representations of instructions in binary

* Registers
« Where the processor can store intermediate results and operands

= Data types and formats
« Example: integers, floating-point numbers, characters

= Memory addressing modes
« How the processor can access the operands from the memory

CS-173, © EPFL, Spring 2025

58

RISC and CISC ISAs

= Complex vs. Reduced Instruction-Set Computers (CISC vs. RISC)

= RISC ISAs are simpler, contain fewer classes of instructions,
and are more regular and easier to implement than CISC
* Most Intel processors are CISC; MIPS, Alpha, Sparc, RISC-V are RISC

« Note: More about what makes RISC ISAs advantageous will be discovered
and analyzed in CS-208 Computer Architecture course

= In CS-17/3, we will study RISC-V open-source ISA

v4 RISC-V/°

https://riscv.org/
https://riscv.org/

why P4 RISC-/°

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

= RISC-V ISA was born in the last decade with the goal to become a universal
ISA, suiting all purposes (tiny devices, high-performance computers)

= Belongs to an open, non-profit foundation whose goal is to maintain
the stability of RISC-V, carefully and slowly evolve it, and make it as popular
for hardware as Linux is for operating systems

CS-173, © EPFL, Spring 2025

60

https://riscv.org/

Why P/, RISC-\/°

Contd.

» RISC-V ISA is modular
At the core is a base ISA called RV32I (32-bit integer operations)

« RV32lis frozen and will never change

« Modularity is achieved with optional standard ISA extensions that
hardware can include or not

« For example, RVIMFD ISA has

« RV32|,

« multiply,

* single-precision floating point, and

» double-precision floating-point extensions

CS-173, © EPFL, Spring 2025

61

https://riscv.org/

Why Modular ISA?

= Conventional approach in
computer architecture is
incremental [SA

« New CPUs must implement
both the new ISA extensions
and the past ones

= The result is a substantial
growth of ISAs, even
when some instructions
are no longer in use

Number x86 Instructions

= Modular ISA is free of these artifacts

CS-173, © EPFL, Spring 2025

1600

1200

800

400

0

0140 145 162

1982 1986 1990 1994 1998 2002 2006 2010 2014

Figure 1.2: Growth of x86 instruction set over its lifetime. x86 started with 80 instructions in 1978. It grew
16X to 1338 instructions by 2015, and it’s still growing. Amazingly, this graph is conservative. An Intel blog
puts the count at 3600 instructions in 2015 [Rodgers and Uhlig 2017], which would raise the x86 rate to one
new instruction every four days between 1978 and 2015.

Figure from The RISC-V Reader: An Open Architecture Atlas
Patterson and Waterman

62

CS-173, © EPFL, Spring 2025

63

Executive Summary

= Basic computer components are
« Arithmetic-logic unit (ALU)
» Register file
« Program counter (PC) register
« Control logic
* Instruction and data memory

= Assembly language is the last human-readable level of code
= Below assembly is only the machine code (binary)

= CPU instructions are kept in the instruction memory,
which is different from the register file

Executive Summary
Contd.

= |[n a Von Neuman computer architecture, instruction and data
memories are unified

= |nstructions are encoded as binary data words, and often
contain the type of operation, the sources (operands) and
the destination (result)

= |Instruction Set Architecture (ISA) is one of the important
abstractions in computing

= |SA refers to the set of instructions that a CPU can execute
and the programming model that these instructions define
for software developers

Literature

COMPUTER ORGANIZATION

AND DESIGN RiSG-v EDITION
THE HARDWAR SOFTWARE INTERFACE

\
b¥ SESOAD (DTN

- e
* e
C - eees
S eeee
e .0
Teeew
* e

M< pemrmerrre T

= Chapter 4: The Processor
= 41,43

CS-173, © EPFL, Spring 2025

= Chapter 1: Why RISC-V?

66

