
Computer Architecture
Introduction to Processors

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html


Previously on FDS
Designing Digital Systems

2CS-173, © EPFL, Spring 2025
© kras99 / Adobe Stock



3

Previously

▪Designing complete digital systems

▪Buses in digital systems
• With tri-state drivers or multiplexers

• Swapping registers example

▪ Verilog loops and generate construct for instantiating modules
• Ripple-carry adder example

▪ Verilog: reduction operators and generate constructs

CS-173, © EPFL, Spring 2025



4

What Have We Learnt So Far?

▪ Important classes of digital building blocks
• Sequential building blocks: flip-flops, registers, counters, …

• Combinational logic components: gates, multiplexers, …

• Memories: devices that store information

• Controllers: finite state machines

▪ Verilog: A language for describing and modelling digital circuits

▪With that knowledge, we can design an entire simple processor

CS-173, © EPFL, Spring 2025



Let’s Talk About…
…Designing a Simple Processor

5CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



Quick Outline

▪ Processor

▪ From programs to computers

• Translating high-level code into binary

• Why design a processor?

▪ Under the hood

• Data path and control path

• Instruction and data memory

• A Simple Computer

▪ Harvard vs. Von Neuman

▪ Instruction set architecture

▪ Why RISC-V?

6CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



A Processor

7CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



8

A Processor

▪ A processor, also referred to as 
a Central Processing Unit (CPU), 
is the central component in any
general-purpose computing system

• E.g., phones, laptops, tablets, servers, …

▪ CPU is responsible for executing software 
applications and facilitating data processing 

▪ CPU orchestrates the data manipulations 
according to the instructions provided by 
software programs

CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



9CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock

From Programs to Computers



10

A Simple Computer Program
C Programming Language

▪ Consider this piece of code

▪ Q: What does it do?

▪ A: It counts the number of 
ones in the 32-bit integer 
data and stores the result 
in the variable result
• result = 9

CS-173, © EPFL, Spring 2025

// variable initialization

int data = 0x00123456;  // hexadecimal

int result = 0;           

int mask   = 1;

int count  = 0;

int temp   = 0;

int limit  = 32;

do {                      // loop

temp   = data & mask;   // bitwise and

result = result + temp; // addition

data   = data >> 1;     // shift right

count  = count + 1;     // addition

} while (count != limit); // condition



E
X

A
M

P
L

E
S

The number of ones in the 32-bit variable data 11

A Simple Computer Program
C Programming Language

▪ Solution; variable updates through loop iterations

CS-173, © EPFL, Spring 2025

Step data temp result

Initialization 0000 0000 0001 0010 0011 0100 0101 0110 0 0

1st Loop iteration 0000 0000 0001 0010 0011 0100 0101 0110 0 0

2nd Loop iteration 0000 0000 0000 1001 0001 1010 0010 1011 1 1

3rd Loop iteration 0000 0000 0000 0100 1000 1101 0001 0101 1 2

4th Loop iteration 0000 0000 0000 0010 0100 0110 1000 1010 0 2

5th Loop iteration 0000 0000 0000 0001 0010 0011 0100 0101 1 3

… … … …

31st Loop iteration 0000 0000 0000 0000 0000 0000 0000 0000 0 9

32nd Loop iteration 0000 0000 0000 0000 0000 0000 0000 0000 0 9



▪ Q: Identify lines that concern data
• Read, write/update, compute

▪ A:

• variable initializations

• operations: bitwise, arithmetic, 
logic, relational, shift, etc.

• assignments

12

A Simple Computer Program
Low level programming, C language

CS-173, © EPFL, Spring 2025

// variable initialization

int data = 0x00123456;  

int result = 0;

int mask   = 1;

int count  = 0;

int temp   = 0;

int limit  = 32;

do {                 

temp   = data & mask; 

result = result + temp;

data   = data >> 1;    

count  = count + 1;    

} while (count != limit);  



13

A Simple Computer Program
Low level programming, C language

▪ Q: Identify lines that control
the execution of the program
and the flow of data
• if-else, switch, loop, etc.

▪ A: do-while loop 

▪ There exists also some hidden 
control that makes the program 
execute sequentially (one line 
after another), loop, skip some 
lines, or return to an earlier line

CS-173, © EPFL, Spring 2025

// variable initialization

int data = 0x00123456;

int result = 0;

int mask   = 1;

int count  = 0;

int temp   = 0;

int limit  = 32;

do {                    

temp   = data & mask; 

result = result + temp;

data   = data >> 1;    

count  = count + 1;    

} while (count != limit);    



Hardware-Friendly Programs

14CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



15

Machine Language
Binary

▪Hardware does not speak C, Java, Python, …; it speaks ‘0’ and ‘1’

▪Machine language is the lowest level of programming language

▪CPU code consists of machine language instructions
• Instructions instruct the processor to execute a specific task

• Instructions are patterns of bits that correspond to CPU commands

CS-173, © EPFL, Spring 2025



16

Translating High-Level Code Into Binary

▪ Source code

• The process begins with a high-level source code written in a programming language

▪ Compilation or interpretation

• The source code is processed by a compiler or interpreter

• Compiler translates the code in intermediate formats, specific to the target platform

• Interpreter executes the source code line by line, translating them into machine code 
(binary) and executing them immediately

▪ Optimization

• Compiler may optimize the code to improve performance or reduce its size

CS-173, © EPFL, Spring 2025



17

Translating High-Level Code Into Binary
Contd.

▪ Linking (for compiled languages)

• Combining intermediate formats with external libraries and functions, if needed

▪ [Optional] Assembly code generation

• Human-readable representation of machine code

▪ Binary code generation

• Sequences of 0s and 1s representing machine instructions

CS-173, © EPFL, Spring 2025

Note: Assembly and binary code will be in our focus…



18

From High-Level Programs to Assembly
Algorithm

Let us now translate our simple program to something hardware can be made 
to understand…

▪ Step 1: Add line numbers and labels

▪ Step 2: Assign variables to registers

▪ Step 3: Replace each code line with
a corresponding machine language instruction

CS-173, © EPFL, Spring 2025



19

Step 1: Line Numbering and Labeling

▪Number lines of code
• Do not number lines 

that have no effect on 
the program execution

▪ Label what may be 
important lines of code
• E.g., loop body

▪Use appropriate 
symbols for comments

CS-173, © EPFL, Spring 2025

# variable initialization

int data = 0x00123456; 

int result = 0;

int mask   = 1;

int count  = 0;

int temp   = 0;

int limit  = 32;

do {                      

temp   = data & mask;   

result = result + temp; 

data   = data >> 1;     

count  = count + 1;     

} while (count != limit);      

0

1

2

3

4

5

6

7

8

9

10

loop:

Note: Program conversion in progress…



20

Step 2:  Assign Variables to Registers

▪ Variables are data
• Variables are read

• Variables are updated (overwritten)

▪Registers store data
• Registers are read

• Registers are updated (overwritten)

CS-173, © EPFL, Spring 2025

Program variables
reside in registers



21

Step 2:  Assign Variables to Registers
Contd.

▪ Assuming registers are 
named x0, x1, x2, etc., 
and each register stores 
32 bits, let us assign 
variables as follows
• data:   x1

• result: x2

• mask:   x3

• count:  x4

• temp:   x5

• limit:  x6

CS-173, © EPFL, Spring 2025

# variable initialization

x1 = 0x00123456; # data

x2   = 0;          # result

x3   = 1;          # mask

x4   = 0;          # count

x5   = 0;          # temp

x6   = 32;         # limit

do {                      

loop: x5   = x1 & x3;   

x2   = x2 + x5; 

x1   = x1 >> 1;     

x4   = x4 + 1;     

} while (x4 != x6);      

0

1

2

3

4

5

6

7

8

9

10

Note: Program conversion in progress…



22

Step 3: Instructions
In Assembly 

▪ Let us rewrite every line using commands/instructions in the format below

▪ Destination and operands are variables (registers)

▪ Let us give the operations some simple codenames:
• li: load a literal (an immediate) into a variable

• and: bitwise and of two variables

• add: addition of two variables

• addi: addition of a variable and a literal (an immediate, a value)

• srli: shift right logical by a literal (an immediate)

• bne: if two variables are not equal, go to the line with the label (branch)
CS-173, © EPFL, Spring 2025

Operation name Destination, Left operand, Right operand



23

Step 3: Instructions
In Assembly, Contd.

CS-173, © EPFL, Spring 2025

li   x1, 0x00123456

li   x2, 0 

li   x3, 1

li   x4, 0

li   x5, 0

li   x6, 32

# do {

loop: and  x5, x1, x3    # x5   = x1 & x3   

add  x2, x2, x5    # x2   = x2 + x5

srli x1, x1, 1     # x1   = x1 >> 1    

addi x4, x4, 1     # x4   = x4 + 1   

bne  x4, x6, loop # while (x4 != limit)      

0

1

2

3

4

5

6

7

8

9

10

Note: Program conversion in progress…

Operation name Destination, Left operand, Right operand



24

Et Voila !

▪ Our first program in assembly

▪ Although it seems less readable
(to humans), it is way more suitable 
for hardware implementation
• Operations are encoded in a simple

and regular manner

• Translation to binary is trivial

• Variables (data) live in registers

Let us now design a digital circuit able to interpret 
and execute this program: the CPU …

CS-173, © EPFL, Spring 2025

li   x1, 0x00123456

li   x2, 0 

li   x3, 1

li   x4, 0

li   x5, 0

li   x6, 32

loop: and  x5, x1, x3 

add  x2, x2, x5

srli x1, x1, 1

addi x4, x4, 1

bne  x4, x6, loop

Note: Program conversion completed



25

Why Design a Processor?

▪ We know how to design a fast digital logic circuit that counts the number of 
ones in a 32-bit binary number
• From truth tables to efficient implementation with logic gates or

• With shift registers and counters, as a more algorithmic approach

▪Q: Why design a processor now?

▪ A: Processors can do much more than counting the number of ones.
When the sequence of instructions changes, the processor’s work also 
changes. Yet, this versatility comes with a runtime penalty, as specialized 
solutions always outperform the general-purpose ones

CS-173, © EPFL, Spring 2025



Under The Hood
Inside Processors

26CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



27

Two Parts of a Processor

▪Part I: Data path
• Concerns everything related to data

• Variable storage/read/write

• Operations on variables

• Includes the digital logic circuits that perform
operations on data or hold data

▪Part II: Control path
• Concerns everything related to the code execution

• Instruction reading/decoding/sequencing

• Manages the digital circuits of the datapath so they
perform the operations as specified by the instructions

CS-173, © EPFL, Spring 2025
© Sashkin / Adobe Stock



28

Part I: Data Path

▪Data path, also called datapath, contains
• An arithmetic-logic unit (ALU)

• A register file

▪ALU performs the operations on program variables
• E.g., bitwise, logic, shift, comparisons, etc.

▪Register file is an array of registers for keeping the program 
variables and some other special uses

CS-173, © EPFL, Spring 2025



29

Arithmetic-Logic Unit
A High-Level View

▪ Recall: ALU performs operations on program variables
• E.g., bitwise, logic, shift, comparisons, …

CS-173, © EPFL, Spring 2025

ALU

A

B Op

Operand; Input
(a vector, typically 32 bits) Result; Output

(a vector, typically 32 bits)

"Code" of the operation
to perform on the operands

(binary vector)

Operand; Input
(a vector, typically 32 bits)



30

Register File
A High-Level View

▪ Recall: Register file is an array of registers for keeping the program variables 
and some other special uses

▪ All ports (in, out) of the register file connect to all registers in the array

▪ Two registers can be read in the same clock cycle

Register
File

Registers

. . .

Ports of the register file



Register File
A High-Level View

▪ Two registers can be read in
the same clock cycle

▪ Reading from and writing to registers
is fast (one CPU clock cycle)

▪ FF is expensive per bit
• DFF typically contains ~20 transistors

▪ In practice, register files are constructed
using SRAM memory cells
• SRAM cell typically contains ~6 transistors

31

Register
File

Registers
. . .



32

Register File
A High-Level View

CS-173, © EPFL, Spring 2025

Data from register "A"; Output
(a vector, typically 32 bits)Register

File

A

B

W

AW Wr AA AB

Data to write to register "AW"
(a vector, typically 32 bits); Input

Data from register "B"; Output
(a vector, typically 32 bits)

Index of the register "AW" to write to
(index is often called "address"); Input

Write enable – if active, 
data on input W port is

written to register AW; Input

Index of the register "B"; Input
(index is often called "address")

Index of the register "A"; Input
(index is often called "address")



33

Datapath
Connected, Final

▪ ALU receives operands from
the outputs of the register file

▪ Register file receives the result
of the operation performed by
the ALU and saves it in one
of its registers

▪ Registers in the register file and
the ALU are tightly coupled (i.e., 
close, wires connecting them are
short), which makes data transfer
between them fast

CS-173, © EPFL, Spring 2025

ALU
Register

File

A

B

W

AW Wr AA AB

Op



34

Datapath
Connected, Final

▪ Example instruction

• and x5, x1, x3

• operation code for and

• (101)2 for register x5

• (001)2 for register x1

• (011)2 for register x3

CS-173, © EPFL, Spring 2025

ALU
Register

File

A

B

W

AW Wr AA AB

Op

“and”“x5” 1
“x1”

“x3”

Note: “x5” and others should be replaced by the corresponding binary vectors

Operation Destination, Left operand, Right operand

Note: Instruction is a binary vector, structured



CS-173, © EPFL, Spring 2025 35



36

Two Parts of a Processor
Recall

▪Part I: Data path
• Concerns everything related to data

• Variable storage/read/write

• Operations on variables

• Includes the digital circuits that perform operations
on data or hold data

▪Part II: Control path
• Concerns everything related to the code execution

• Instruction reading, decoding, and sequencing

• Manages the digital circuits of the data path so they
perform the operations as specified by the instructions

CS-173, © EPFL, Spring 2025
© Sashkin / Adobe Stock



37

Part II: Control Path

▪ The control logic of the processor

▪Roles
• Instruction reading (loading instructions from the program in memory)

• Sequencing instructions (ensuring the correct program order)

• Decodes the instruction from its binary form

• Depending on the instruction, sets control signals for the ALU
and the Register File accordingly

▪ Implements the finite-state machine of the processor

CS-173, © EPFL, Spring 2025



38

Instruction Memory
Role I: Reading Instructions

▪Where is the program?
• The program (instructions) resides in a larger memory external to the CPU

▪We call this memory instruction memory
• External to the processor

• Typically made from SRAM memory cells

• Instruction memory ≠ Register file

CS-173, © EPFL, Spring 2025

Instruction
Memory

Address

MemDataOut

Data from the memory
(a vector, typically 32 bits); Out

Address (location) of the instruction to read
(a vector, typically 32 bits); Input

Note: Additional interfaces not shown



Control Path
Role II: Sequencing Instructions

▪ Control path logic sets the address 
of the instruction to be read from 
the memory

▪ CPU has an additional register 
dedicated to keeping
the address (location) of the 
instruction in memory

• Program Counter (PC)

39CS-173, © EPFL, Spring 2025

Instruction
Memory

Address

MemDataOut
?Program

Counter (PC)



Control Path
Role I: Sequencing Instructions, Contd.

▪ Control logic updates the program 
counter (PC), in preparation for 
reading of the next instruction

▪ The next instruction in memory is 
typically at the neighboring memory 
address, higher than the previous
• PC should be incremented to “point” to 

the next instruction

40CS-173, © EPFL, Spring 2025

Program
Counter (PC)

Instruction
Memory

Address

MemDataOut
?



E
X

A
M

P
L

E
S

41

Sequencing Instructions
Contd.

▪ Recall: PC register holds the instruction address

▪ Adder increments the contents of the PC, so that the subsequent
instruction is read in the next clock cycle

▪ Example instruction at the line/index/address 6

CS-173, © EPFL, Spring 2025

+

1

Program
Counter (PC)D Q

“and x5, x1, x3“

6

7

loop: and  x5, x1, x36

Instruction
Memory

Address

MemDataOut



E
X

A
M

P
L

E
S

42

Sequencing Instructions
Contd.

▪ Example instruction at the line/index/address 10

• Next instruction (label loop)
on line/index/address 6

• PC must be able to accept a value
other than the one computed by the adder

CS-173, © EPFL, Spring 2025

+

1

Program
Counter (PC)D Q

“bne x4, x6, loop”

10
MUX

6 SEL

loop: and  x5, x1, x3

…

bne x4, x6, loop

6

…

10

Instruction
Memory

Address

MemDataOut



43

Control Path
Role III: Decoding Instructions

▪ Once the instruction is read
from the instruction memory,
it must be decoded

▪ Decoding is parsing the binary 
representation of the instruction, 
to identify all the relevant info
• operation

• destination

• operands

CS-173, © EPFL, Spring 2025

ALU
Register

File

A

B

W

AW Wr AA AB

Op

Instruction Decoding Logic

Instruction
Memory

Address

MemDataOut



CS-173, © EPFL, Spring 2025 44



45

Data Path + Control Path
CPU with Instruction Memory

CS-173, © EPFL, Spring 2025

ALU
Register

File

A

B

W

AW Wr AA AB

Op

+

1

Program
Counter (PC)D QMUX

SEL

Control Logic (Read, Decode, Update PC)

Note: Almost there…

Instruction
Memory

Address

MemDataOut



CS-173, © EPFL, Spring 2025 46



47

Register File is Not Sufficient

▪One remaining challenge: In practice, the quantity of data on 
which programs operate is way too large to fit in the register file

▪ There is always an external memory for data, which
• … can be dedicated to data only or

• … can be shared by the data and the instructions

• … is much larger (in capacity) and slower than the register file

CS-173, © EPFL, Spring 2025



48

Data Memory

CS-173, © EPFL, Spring 2025

ALU
Register

File

A

B

W

AW Wr AA AB

Op

MemDataOut

Address Wr

MemDataIn

Data Memory

Address (location) of the data to read
(a vector, typically 32 bits); Input

Control signal, write enable (one bit); Input

Data from the memory
(a vector, typically 32 bits); Output

Data to the memory
(a vector, typically 32 bits); Input



49

Now We Have Everything…

▪…to build a simple CPU

• Arithmetic-logic unit (ALU) and
Register File for variables and computation

• Instruction memory

• Program counter (PC) register
for instructions fetched from memory

• Data memory

CS-173, © EPFL, Spring 2025
© Sashkin / Adobe Stock© Sashkin / Adobe Stock



A Simple Computer
Processor ( = Data Path + Control Path)
and the data/instruction memory

50CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



51

A Simple Computer
CPU + Memory

CS-173, © EPFL, Spring 2025

Data Memory

MemDataOut

Address Wr

MemDataIn

Instruction
Memory

Address

MemDataOut

+

1

Program
Counter (PC)D QMUX

SEL

Control Logic (Read, Decode, Update PC)

MUX

SEL

ALU
Register

File

A

B

W

AW Wr AA AB

Op

CPU



52

Disclaimer…

▪ A number of simplifications in the previous figure, but the main idea is there

▪ In practice, many more signals and ports exist, along with multiplexers and 
other logic to enable the execution of any program

▪ Memories support both read and write and have more complex interfaces

CS-173, © EPFL, Spring 2025



53

Types of Computer Architecture

▪Harvard architecture
• Instructions and data memory reside in separate memories

• See the block diagram on the previous slide

▪Von Neuman architecture
• Instructions and data reside in the same memory

• We say the memory is unified

• In general-purpose computers (desktops, laptops, servers, etc.),
Von Neumann architecture is predominant

CS-173, © EPFL, Spring 2025



Instruction Set Architecture
One of many important computing abstractions

54CS-173, © EPFL, Spring 2025
© supranee / Adobe Stock



55

Instruction Set Architecture

▪ Instruction Set Architecture (ISA)
refers to the set of instructions
that a CPU can execute and
the programming model that 
these instructions define for
software developers

CS-173, © EPFL, Spring 2025

ISA

Transistors

Digital circuits

Assembler

Compilers

Databases

Applications

Software

Hardware



56

Instruction Set Architecture
Contd.

▪ ISA abstracts away the low-level details
of the CPU hardware implementation

▪ ISA defines an interface between
the hardware and software
components of a computer system

CS-173, © EPFL, Spring 2025

ISA

Transistors

Digital circuits

Assembler

Compilers

Databases

Applications

Software

Hardware



57

Why Is ISA So Important?

✓Formalization of the programmer view allows the CPUs to continue 
supporting the same ISA while evolving and improving over time

✓Users profit from the advancements in the CPU architecture
(e.g., higher speed) for free, without having to update their programs

▪ Drawback: fundamental innovations that require changes to ISA are thus 
prevented; fixed ISA enforces binary compatibility

▪ Example:
• IA-32/x86 is a very common ISA introduced by Intel. Intel's Core, Pentium, and Xeon 

series, as well as AMD's Ryzen, Athlon, and EPYC series conform to this ISA

CS-173, © EPFL, Spring 2025



58

Typical Details of an ISA

▪ Instruction set
• What operations the processor can directly execute

▪ Instruction encoding
• Representations of instructions in binary

▪Registers
• Where the processor can store intermediate results and operands

▪Data types and formats
• Example: integers, floating-point numbers, characters

▪Memory addressing modes
• How the processor can access the operands from the memory

CS-173, © EPFL, Spring 2025



59

RISC and CISC ISAs

▪Complex vs. Reduced Instruction-Set Computers (CISC vs. RISC)

▪RISC ISAs are simpler, contain fewer classes of instructions,
and are more regular and easier to implement than CISC
• Most Intel processors are CISC; MIPS, Alpha, Sparc, RISC-V are RISC
• Note: More about what makes RISC ISAs advantageous will be discovered

and analyzed in CS-208 Computer Architecture course

▪ In CS-173, we will study RISC-V open-source ISA

CS-173, © EPFL, Spring 2025

https://riscv.org/
https://riscv.org/


60

Why                                  

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

▪ RISC-V ISA was born in the last decade with the goal to become a universal 
ISA, suiting all purposes (tiny devices, high-performance computers)

▪ Belongs to an open, non-profit foundation whose goal is to maintain
the stability of RISC-V, carefully and slowly evolve it, and make it as popular 
for hardware as Linux is for operating systems

CS-173, © EPFL, Spring 2025

https://riscv.org/


61

Why
Contd.

▪RISC-V ISA is modular
• At the core is a base ISA called RV32I (32-bit integer operations)

• RV32I is frozen and will never change

• Modularity is achieved with optional standard ISA extensions that 
hardware can include or not

• For example, RVIMFD ISA has
• RV32I,

• multiply,

• single-precision floating point, and

• double-precision floating-point extensions

CS-173, © EPFL, Spring 2025

https://riscv.org/


62

Why Modular ISA?

▪ Conventional approach in
computer architecture is
incremental ISA
• New CPUs must implement

both the new ISA extensions
and the past ones

▪ The result is a substantial
growth of ISAs, even
when some instructions
are no longer in use

▪ Modular ISA is free of these artifacts

CS-173, © EPFL, Spring 2025

Figure from The RISC-V Reader: An Open Architecture Atlas
Patterson and Waterman



CS-173, © EPFL, Spring 2025 63



64

Executive Summary

▪ Basic computer components are

• Arithmetic-logic unit (ALU)

• Register file

• Program counter (PC) register

• Control logic

• Instruction and data memory

▪ Assembly language is the last human-readable level of code

▪ Below assembly is only the machine code (binary)

▪ CPU instructions are kept in the instruction memory, 
which is different from the register file

CS-173, © EPFL, Spring 2025



65

Executive Summary
Contd.

▪ In a Von Neuman computer architecture, instruction and data
memories are unified

▪ Instructions are encoded as binary data words, and often
contain the type of operation, the sources (operands) and
the destination (result)

▪ Instruction Set Architecture (ISA) is one of the important
abstractions in computing

▪ ISA refers to the set of instructions that a CPU can execute
and the programming model that these instructions define
for software developers

CS-173, © EPFL, Spring 2025



66

Literature

CS-173, © EPFL, Spring 2025

▪ Chapter 4: The Processor
▪ 4.1, 4.3

▪ Chapter 1: Why RISC-V?


